TRIMETHYLSILYL TRICHLOROACETATE: A NEW REAGENT FOR SALT-FREE SILYLATIONS

James M. Renga* Agricultural Products Research & Development The Dow Chemical Company 2800 Mitchell Drive Walnut Creek, California 94598

Pen-Chung Wang Central Research, Organic Specialties Laboratory The Dow Chemical Company, M. E. Pruitt Building Midland, Michigan 48640

<u>Abstract</u>: Trimethylsilyl trichloroacetate (<u>1</u>) is a convenient reagent for the silylation of phenols, carboxylic acids, mercaptans, amides, acetylenes, and β -keto esters, while the reaction of <u>1</u> with aldehydes and ketones affords silylated trichloromethyl carbinols (5).

Among the various silulation reagents available,¹ those that can abstract protons as well as transfer silul groups are particularly attractive from a synthetic standpoint. Because the co-products from these reagents are volatile hydrogen,² ammonia,³ ammonia/CO₂,⁴ dimethyl amine/CO₂,⁵ propylene,⁶ ethyl acetate,⁷ and water,⁸ product isolations are greatly simplified. Our recent success with using methyl trichloroacetate for the salt-free methylation of phenols⁹ and carboxylic acids¹⁰ prompted us to explore the silulation potential of trimethylsilyl trichloroacetate (<u>1</u>).^{8a},¹¹ We now wish to report that <u>1</u>¹² readily silulates a variety of substrates (<u>2</u>), including phenols, mercaptans, carboxylic acids, amides, acetylenes, cyclic carbamates, and β -keto esters in the presence of a catalytic amount of K₂CO₂/18-crown-6, producing chloroform and carbon dioxide as the co-products (Table 1).

$$CCl_{3}^{"}COSiMe_{3} + R-H \xrightarrow{K_{2}CO_{3}} R-SiMe_{3} + CHCl_{3} + CO_{2}$$

$$\frac{1}{2} \xrightarrow{2} 3$$

n

A typical silylation involves heating a rapidly stirred mixture of $\underline{1}$ (15 mmol), $\underline{2}$ (12.5 mmol), potassium carbonate (0.25 mmol), and 18-crown-6 (0.25 mmol) to around 100°C, where the evolution of chloroform and carbon dioxide commences. Depending upon the rate of gas evolution, the reaction temperature is maintained at 100°C or gradually raised to 150°C over a 1-2 hour period. A slight excess of $\underline{1}$ is used, due to the competing decarboxylation of $\underline{1}$ to trichloromethyltrimethylsilane.

<u>3</u> a	Reaction ^b Temp., °C	% Isolated Yield	<u>3</u> ª	Reaction ^b Temp., °C	% Isolated Yield
x -OSiMe ₃			PhCO ₂ SiMe ₃	150	88
H 3-Me 4-t-Bu 2-Cl	**	88 90 90 85	CO2SiMe3	100	90
4-Br 4-CN 4-NO ₂ 4-OMe	11 11 11	84 88 80 82	0 NSiMe ₃	100	90
2-Ph	" 100	77 94 [°]	NSiMe ₃	110	75
			Ph-≡-SiMe3	130	88
BrSSiMe3	100	91	Me CO ₂ Et	130	80

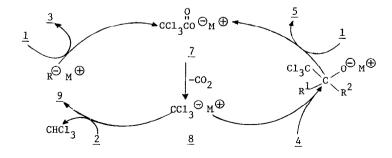
Table 1. Silylations Using Trimethylsilyl Trichloroacetate (1)

^aThese structures were assigned by 1 H-NMR. ^bThe reaction time is less than one hour.

^cThis compound is very sensitive to moisture.

Quaternary ammonium and phosphonium salts, as well as 4-dimethylaminopyridine (DMAP), also catalyze the reaction. In a comparative study using p-methoxyphenol at 150°C with 2 mole % catalyst present, complete silylation was observed in less than 15 min. with $K_2CO_3/18$ -crown-6, while with <u>n</u>-Bu₄NBr, <u>n</u>-Bu₄PBr, and DMAP the formation of <u>3</u> in 15 min. was 38%, 37%, and 32% respectively. Although complete silylation resulted within 45 min. for all three catalysts, considerable decomposition of the quaternary salts resulted.¹³

The reaction of $\underline{1}$ with aldehydes and ketones cleanly gives trimethylsilyl trichloromethyl carbinols (5) rather than silyl enol ethers (Table 2).


A 1,2-addition product is obtained with p-benzoquinone, while with 2-cyclohexen-l-one a 1:1 mixture of 1,2- and 1,4-addition products is isolated. Acid-catalyzed hydrolysis of 5 affords the corresponding trichloromethyl carbinols 6, thus offering a convenient alternative to the traditional formation of 6^{14} from chloroform and base, ¹⁵ from the decomposition of sodium trichloroacetate, ¹⁶ or from the decomposition of trichloroacetic acid.¹⁷

Carbonyl Compound	a,b 5	% Isolated Yield	
СНО	CC13 OSIMe3	93	
С1 С1 С1	C1 C1 C1 CC1 CC13 OSIMe3	82	
но – Сно	Me3SIO-CC13 OSIMe3	75	
(CH ₂) _n =0	(CH ₂) _n CCl ₃ OSIMe ₃		
	n = 3 n = 4 n = 5	96 90 88	
0==0	$o = \sum_{\text{OSIMe}_3} CC1_3$	72	
0	$CC1_{3}$ $CC1_$	80	

Table 2. Formation of Trimethylsilyl Trichloromethyl Carbinols (5)

 a Satisfactory elemental analyses and spectral data were obtained for all compounds. ^bThe reaction temperature is 100°C and the reaction time is less than one hour.

The above results suggest a mechanism which involves a desilylation of $\underline{1}$ to give $\underline{7}$, followed by decarboxylation of $\underline{7}$ to give $\underline{8}$. However, a pathway involving intermediates derived from acyl attack of $\underline{9}$ on $\underline{1}$ cannot be eliminated at this point, $\underline{9}$ as the reaction of $\underline{1}$ with alcohols gives predominately a mixture of alkyl trichloroacetates and hexamethyl-disiloxane.

References and Notes

- J. F. Klebe, <u>Accounts Chem. Res.</u>, (1970), <u>3</u>, 299; S. S. Washburne, <u>J. Organomet. Chem.</u>, (1974), <u>83</u>, 155; F. W. Colvin, <u>Chemical Society Reviews</u>, (1978), <u>7</u>, 15; B. E. Cooper, <u>Chem. Ind.</u>, (1978), 794.
- 2. M. Paul, J. Dunogues and R. Calas, J. Organomet. Chem., (1972), 58, 267.
- R. Fessenden and D. F. Crowe, <u>J. Org. Chem.</u>, (1961), <u>26</u>, 4638; S. H. Langer, S. Cornell, and I. Wender, <u>J. Org. Chem.</u>, (1958), <u>23</u>, 50.
- 4. L. Birkofer and D. Sommer, J. Organomet. Chem., (1975), 99, c1.
- D. Knausz, A. Meszticzky, B. Csakvari, B. Karacsonyi, J. Benczik, R. Novak, D. Sebok, B. Juhasz Nagy, and J. Lakacs, Hung. Teljes HU 20.651 (1981); <u>CA</u> (1982) <u>96</u>:12224of.
- 6. T. Morita, Y. Okamoto, and H. Sakurai, Tetrahedron Lett., (1980), 835.
- Y. Kita, J. Haruta, J. Segawa, and Y. Tamura, <u>Tetrahedron Lett.</u>, (1979), 4311;
 E. Nakamura, T. Murotushi, M. Shimizu, and I. Kuwajima, <u>J. Am. Chem. Soc.</u>, (1976), <u>98</u>, 2346.
- 8. a) H. W. Pinnick, B. S. Bal, and N. H. Lajis, <u>Tetrahedron Lett.</u>, (1978), 4261;
 b) H. Matsumoto, Y. Hoshino, J. Nakabayashi, T. Nakano, and Y. Nagai, <u>Chem. Lett.</u>, (1980), 1475.
- 9. J. M. Renga and P. C. Wang, Synthetic Commun., (1984), 69.
- 10. J. M. Renga and P. C. Wang, Synthetic Commun., (1984), 77.
- a) T. Okada and R. Okawara, <u>J. Organomet. Chem.</u>, (1972), <u>42</u>, 117;
 b) H. H. Hergottan and G. Simcher, <u>Synthesis</u>, 626, (1980).
- 12. On a preparative scale, <u>1</u> can be prepared via the acid-catalyzed silylation of trichloroacetic acid with hexamethyldisiloxane.^{8b} Trimethylsilyl trichloroacetate (<u>1</u>) is also commercially available from Petrarch Systems, Inc., Bristol, PA and Fluka Chemical Corp., Hauppauge, NY.
- E. V. Dehmlow and S. S. Dehmlow, "Phase Transfer Catalysis," Verlag Chemie, Weinheim, (1980), pp. 59-61.
- 14. W. Reeve, Synthesis, (1971), 131.
- 15. A. Merz and R. Tomahogh, Chem. Ber., (1977), 1, 96.
- A. Winston, J. S. Sharp, K. E. Alkins, and D. E. Battin, <u>J. Org. Chem.</u>, (1967), <u>32</u>, 2166.
- 17. P. J. Atkins, V. Gold, and W. N. Wassef, J. Chem. Soc., Chem. Commun., (1983), 6, 283.

(Received in USA 24 September 1984)